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10.0 STAGE II ERC - RISK CHARACTERIZATION

10.1 Purpose

The purpose of the risk characterization is to evaluate measurement results and determine whether they
support a conclusion of no significant risk for each assessment endpoint. In preparing this ERC, the 1990
USFWS Report was the only document, except for the data presented earlier in this ERC, found that was
considered relevant to the current investigation of ecological risk. For two of the assessment endpoints in
this ERC, there was more than a single measurement endpoint. If the results of those measurements did
not agree, those results were considered in combination, and a conclusion was based on a “weight-of-
evidence” approach as described in the MCP guidance (refer to section 7.6 for more details).

10.2 Hazard Quotient or Toxicity Quotient Method

The basic approach for most assessment endpoints in this ERC is a hazard quotient (HQ) approach. HQ
values were calculated for each species under different exposure scenarios and contaminant
concentrations in prey by the use of equation 10-1 for comparison to benchmarks or criteria, equation 10-
2 for tissue residue data, and equation 10-3 for dietary exposure.

_ Exposure (mg/kg) Eq. 10-1
Benchmark or screening value (mg/kg) : '

Tssue concentration (mg/kg)

e — Eq. 10-2
Toxicity reference value (mg/kg)

_ ADDypot (mg/kg) Eq. 10-3
Toxicity reference value (mg/kg)

Because of the conservativeness of the exposure calculations, benchmarks, ‘and TRVs, HQ values less
than 1.0, indicate that no unacceptable risks will occur. For HQ values greater than 1.0 some potential for
risk is inferred and there may be a need for further evaluation. While the Stage I screening-level ERC
does not attempt to quantify the nature and extent of potential risks, results from the Stage II ERC, to the
extent possible, do attempt to quantitatively and qualitatively describe the risks to the environment.

MADEP guidance recommends that when the hazard quotient approach is utilized for characterizing risk
to wildlife that HQs are derived for both the lowest observed adverse effect level (LOAEL) and the no
observable adverse effect level (NOAEL). Furthermore, MADEP states the following guidelines for
characterizing risk using NOAEL- and LOAEL-based HQs:

e  When the site dose exceeds the LOAEL and the LOAEL-based HQ is greater than 1.0, it
is reasonable to conclude that the quotient evaluation method provides evidence of harm.
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e When the site dose is less than the NOAEL and NOAEL-based HQ is less than 1.0, the
risk assessor may reasonably conclude that the quotient evaluation method does not
provide evidence of harm.

e  When the site dose is greater than the NOAEL but less than the LOAEL, no conclusion
may be reached based on the predictive method alone, and additional assessment efforts
are necessary to determine whether the COPEC has harmed or may harm the
environment.

10.3 Weight-of-Evidence Approach

The Massachusetts Weight-of-Evidence Workgroup defines weight-of-evidence as “the process by which
multiple measurement endpoints are related to an assessment endpoint to evaluate whether significant
risk of harm is posed to the environment” (Massachusetts Weigh-of-Evidence Workgroup, 1995). A
weight-of-evidence approach may either be quantitative or qualitative. While the qualitative approach is
clearly simpler to apply than the quantitative approach, it potentially introduces greater subjectivity.
Despite this, MADEP recognizes that the qualitative approach is useful in situations in which- multiple
measurement endpoints do not contradict each other or when a contradiction exists but there is a clear
difference in the scientific defensibility of the endpoints.

In the qualitative approach, the first step is that each measurement endpoint is assigned an overall
qualitative score of high, medium, or low (refer to the section on Problem Formulation). The second step
is to evaluate the outcome of each measurement endpoint with respect to indication of risk of harm (e.g.,
positive, negative, and undetermined) and magnitude of the outcome (e.g., high or low). The third step is
to integrate the measurement endpoint weight and magnitude of response on a matrix, in to determine
whether the overall evidence indicates a risk of harm. These latter two steps are presented in the
following sections.

To determine the magnitude of response for each measurement endpoint, there are two main questions to
address:

e Does the measurement endpoint indicate the presence or absence of harm (positive, negative, or
undetermined)?

e Is the response low or high?

The presence or absence of harm is determined by whether or not the hazard quotient is > 1.0. If the
hazard quotient is > 1.0, there is a positive indication for the risk of harm. If the hazard quotient is < 1.0,
there is a negative indication for the risk of harm. The degree of response was arbitrarily evaluated by the
magnitude of the hazard quotient. The response was considered “low” if the HQs were > 0.1 and < 10
(e.g., less than a factor of 10). The response was considered “high” if the HQs were either < 0.1 or > 10
(e.g., greater than a factor of 10). As a general rule-of-thumb, hazard quotients less than 10 are not
considered potentially ecologically relevant. The rationale for the selection of this 10-fold cutoff for the
degree of response is based on the conservativeness of the toxicological benchmarks and exposure
assumptions utilized in this ERC. In the case of multiple COPECs, the worst-case COPEC (e.g., the one
with the greatest hazard quotient) was utilized to set the magnitude of response.

The final component of the weight-of-evidence approach involves examining the concurrence of
measurement endpoints as they relate to a specific assessment endpoint. In this ERC, each measurement
endpoint (designated by a letter) was plotted on a matrix in which the weight of the measurement
endpoint and its associated magnitude and direction of response are indicated. In this way, the matrix is a
convenient presentation of the concurrence (or divergence) of measurement endpoints.

10-2



November 09, 2001

10.4 Assessment Endpoint #1 - Protection of Fish, Amphibians, and Aquatic Invertebrate
Communities From Adverse Effects Related to Exposure to COPECs in Surface Water

Potential risks to aquatic receptors (aquatic invertebrates, fish, and amphibians) from exposure to
COPEC:s outside of the “Area of Readily Apparent Harm” was characterized by use of a HQ approach
(equation 10-1). Two measurement endpoints were utilized to evaluate this assessment endpoint.

10.4.1 Measurement Endpoint A — Comparison of Concentrations of COPECs in Surface Water -
From the Wetland to Surface Water Quality Criteria That are Designed to be Protective of Aquatic
Organisms.

HQs for aquatic receptors are presented for two different times of the year (low water levels and periods
of inundation; Table 10-1). The information in this table can be summarized as follows:

o The only exceedances of water quality criteria occur during conditions of low flow (or when the
site is not inundated).

e Only copper and zinc exceeded the chronic water quality criteria (only during conditions of low
flow).

e Only copper exceeded the acute water quality criteria (only during conditions of low flow).

o There are no exceedances of water quality criteria during periods of inundation.

Table 10-1. Comparison of water quality criteria to maximum water concentrations in locations outside
of the “Area of Readily Apparent Harm”.

Water Quality Criteria
COPEC Acute Chronic Max. Conc. (ug/L)  HQ - Acute HQ - Chronic
Low Flow

Aluminum 750 87 66 0.09 0.76
Cadmium 5.31 2.60 1.6 0.30 0.62
Copper 16.26 10.64 39 2.40 3.67
Iron 1000 580 0.58
Zinc 278.14 140.21 210 0.76 1.50

Inundation
Aluminum 750 87 229 0.03 0.26
Cadmium 1.99 1.33 0.1 0.05 0.08
Copper 6.92 4.90 4.5 0.65 0.92
Iron 1000 170 0.17
Zinc 128.98 62.68 23.4 0.18 0.37

Since there is an exceedance of water quality criteria when the site is not inundated, there is a positive
indication of risk under these conditions. However, the magnitude of exceedances are not very great
(HQs are between 1 and 10) and are limited to times of the year when the site is not inundated. Thus, the
magnitude of response for this measurement endpoint is assigned a value of “low”. At times of flooding,
when fish and other aquatic species have greater access to the site, the concentrations of all COPECs are
below WQC and thus there is a negative indication of risk under these conditions.
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10.4.2 Measurement Endpoint B - Comparison of Concentrations of COPECs in Surface Water
From the Wetland to Surface Water Benchmarks From Literature-Derived Studies That Were
Conducted Under Conditions of Similar Bioavailability to Those at the Site

As described previously, there are other factors that can ameliorate the bioavailability and toxicity of
metals in surface water, especially copper and to a lesser degree, zinc. For example, USEPA is
considering adoption of criteria that will account for the ameliorating effect of dissolved organic matter
(DOM) on the toxicity of copper (USEPA, 2000c and 2000d). This measurement endpoint was given
greater weight because it uses site-specific information to address bioavailability of COPECs that
exceeded water quality criteria (refer to the results for measurement endpoint #1). HQs for aquatic
receptors are presented for only one time of the year (low water levels) and for only copper and zinc
(Table 10-2). The information in this table can be summarized as follows:

° There are no exceedances of water quality criteria during conditions of low flow (or
when the site is not inundated) when site-specific information is utilized to address bioavailability
of copper and zinc.

Table 10-2. Comparison of water quality criteria to maximum water concentrations in locations outside
of the “Area of Readily Apparent Harm”.

Water Quality Criteria
COPEC! Acute Chronic Max. Conc. (ug/L)  HQ - Acute  HQ - Chronic
‘Low Flow
Copper 162.6 106.4 39 0.24 0.37
Zinc 556.28 280.42 210 0.38 0.75

'Note that only those COPECs that exceeded water quality criteria (Table 10-1) were evaluated for
measurement endpoint B.

Since there are no exceedances of water quality criteria when site-specific information is utilized to
address bioavailability of copper and zinc, there is a negative indication of risk under these conditions.
However, the magnitude of response for this measurement endpoint was not very great (HQs are between
0.1 and 1.0). Thus, the magnitude of response is assigned a value of “low”.

10.4.3 Concurrence of Measurement Endpoints as they Relate to Assessment Endpoint #1

In evaluating the concurrence of measurement endpoints, MADEP guidance recommends consideration
of three factors: (1) the relative weights; (2) the attributes considered in the weighting process; and (3)
whether the endpoints are functionally related to each other so that one result modifies another. In this
case, the magnitudes of both measurement results are the same (low) although the indications for risk are
opposing (one is positive and one is negative) (Table 10-3). However, the endpoints are functionally
related to each other in that Measurement Endpoint B provides a measure of bioavailability, and that it
shows that site-specific bioavailability for the COPECs (copper and zinc) are low. Furthermore, since the
weight of Measurement Endpoint B is greater than that of Measurement Endpoint A, it is reasonable to
conclude that there is no indication of risk of harm to aquatic receptors.
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Table 10-3. Weight of Evidence Summary for Assessment Endpoint #1

MEASUREMENT HIGH MEDIUM LOW
RESULT WEIGHT WEIGHT WEIGHT
Positive — High
Positive — Low A
Indeterminate
Negative — Low B
Negative - High
Measurement endpoints:
A = Water quality criteria were given a medium weight and produced a
low positive result.
B = Literature-derived studies that were conducted under conditions of
similar bioavailability to those at the site; given a high weight and
produced a low negative result.

10.5 Assessment Endpoint #2 - Protection of Wetland Vegetation From Adverse Effects
Related to Exposure to COPECs in Wetland Soils.

Potential risks to wetland vegetation from exposure to COPECs outside of the “Area of Readily Apparent
Harm” was characterized by use of a HQ approach (equations 10-1 and 10-2). Three measurement
endpoints were utilized to evaluate this assessment endpoint.

10.5.1 Measurement Endpoint A — Comparison of Concentrations of COPECs in Wetland Soils to
Literature-Based Phytotoxicity Benchmarks that are Reported to be Protective of Vegetation.

Soil-based phytotoxic benchmarks from the literature were compared to exposure point concentrations in
soil outside of the “Area of Readily Apparent Harm” (Table 10-4). The exposure point concentrations are
based on the geometric mean and the arithmetic mean concentration of COPECs in wetland soil (on a dry
weight basis) as two estimates of central tendency (refer to Section 8.2 for more information). Two
different benchmarks were utilized for comparison to exposure concentrations. The information in this
table can be summarized as follows:

e The relative order from greatest to least exceedance of the low soil-based benchmark for
phytoxicity is:

Chromium > copper > silver > lead

e Only chromium and copper exceeded the high soil-based benchmark (although high soil-based
benchmarks are not available for all COPECs)
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Table 10-4. Comparison of soil exposure concentrations from outside the “Area of Readily Apparent
Harm” to screening benchmarks for phytotoxicity.

| Exposure Effects ;!' Risk Characterization
Soil Concentration' Benchmark® Hazard Quotient (HQ)4
(mg/kg dw) (m dw) Low benchmark HQ | High benchmark H
COPEC IGeometric Mear] Mean || Low High Geomean| Mean Geomean| Mean
Antimony 3.85 433 5 NA 0.77 0.87 - -
Arsenic 9.43 14.9 37 NA 0.25 0.40 - -
Cadmium 239 3.34 29 NA 0.08 0.12 - -
Chromium 183 551 50 100 367 || 11.01 1.83 5.51
Chromium (6+) 20.3 50.9 50 500 0.41 1.02 0.04 0.10
Copper 243 585 100 200 2.43 || 5.85 121 | 292
Lead 199 267 196 494 1.01 |r 1.36 0.40 0.54
Manganese 236 311 500 NA 047 0.62 - -
Mercury 0.97 1.68 5 50 0.19 0.34 0.02 0.03
Silver 5.23 237 10 100 0.52 2.37 0.05 0.24
Tin 12.2 22.5 50 500 0.24 0.45 - 0.02 0.04
Vanadium 33.5 39.1 150 500 0.22 0.26 0.07 0.08
Zinc 105 130 190 NA 0.55 0.69 - -
Acenaphthene3 0.03 0.06 2.5 25 0.01 0022 | 0.00 0.00
Total PCBs 1.42 292 40 100 0.04 0.07 0.01 0.03

! Data from Table 4-13.
2 See text for description
3 Acenaphthene was used as a surrogate for total PAHs

*HQ = C,,;i / benchmark
NA = Not available

Since there is an exceedance of soil-based phytotoxicity benchmarks from the literature, there is a positive
indication of risk under these conditions. For different COPECs, the magnitude of exceedances vary from
low (HQs are between 1 and 10) to high (HQs are greater than 10). Thus, the magnitude of response for
this measurement endpoint is assigned a value of “high”.

10.52 Measurement Endpoint B - Comparison of Concentrations of COPECs in Plant Tissues
From the Wetland to Literature-Based Plant Tissue Residue Effect Levels That are Reported to be
Protective of Vegetation.

Tissue-based phytotoxic benchmarks from the literature were compared to exposure point concentrations
in wetland vegetation outside of the “Area of Readily Apparent Harm” (Table 10-5). The exposure point
concentrations are based on the maximum concentration of COPECs in wetland vegetation (on a dry
weight basis). Two different benchmarks were utilized for comparison to exposure concentrations, one
for cattail roots and one for buttonbush seedheads. The information in this table can be summarized as
follows: :
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e None of the COPECs exceeded tissue-based benchmarks. However, the plant tissue
concentrations that were nearest the benchmark were for chromium and copper for both plant
species.

Table 10-5. Comparison of plant tissue concentrations from outside the “Area of Readily Apparent
Harm” to screening benchmarks for phytotoxicity.

Exposure Effects " Risk Characterization
Max Plant Concentration’ Benchmark® Hazard Quotient (HQ)
(mg/kg dw) (mg/kg dw)
COPEC Typha3 Cephal.4 Typha3 Cephal.4 HQ for Typha3 HQ for Cephal.4
Antimony 0.06 0.02 0.1 0.1 0.60 0.19
Arsenic 0.37 0.05 11 1.7 0.03 0.03
Cadmium 0.44 0.06 3 3 , 0.15 0.02
Chromium 1.5 3.30 5 5 0.30 0.66
Chromium (6+) NA NA NA NA - -
Copper 12.7 12.50 100 20 0.13 0.63
1Lead 6.5 0.36 300 50 0.02 0.01
Manganese 76.6 311 1000 1000 0.08 0.31
Mercury 0.02 0.01 3 0.5 0.01 0.01
Silver 0.12 0.31 1760 4 0.00 0.08
Tin 0.99 0.98 2 2 0.50 0.49
Vanadium 0.84 0.03 170 2 0.00 0.02
zine 46.7 - 25.80 100 100 0.47 0.26
Total PAHs NA NA NA NA - -
Total PCBs - 0.0154 0.0029 NA NA - -

! Data from Tables 4-17 and 4-19.

2 See text for description

3Typha latifolia (cattail roots)

*Cephalanthus occidentalis (buttonbush seedheads)
HQuypha = Ciypha / benchmarkip,

HQqephat = Coephal / benchmarkeepnal

NA = Not available

Since there are no exceedances of tissue-based phytotoxicity benchmarks from the literature, there is a
negative indication of risk under these conditions. For different COPECs, the magnitude of exceedances
vary from low (HQs are between 0.1 and 1.0) to high (HQ values less than 0.1). Thus, the magnitude of
response for this measurement endpoint is assigned a value of “low™.
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10.5.3 Measurement Endpoint C - Comparison to Site-Specific, Field-Measured Effect
Concentrations of COPECs in Soil That are Found in the Area of Stunted Vegetation.

Soil-based phytotoxic benchmarks from the site (field-based, not literature-based) were determined and
then compared to exposure point concentrations in soil outside of the “Area of Readily Apparent Harm”
(refer to sections on Exposure Assessment and Effects Assessment for details) (Table 10-6). To
maximize conservatism, the exposure point concentrations are based on the 95% Jower confidence limit
of the arithmetic mean concentration of COPECs in wetland soil outside of the “Area of Readily Apparent
Harm” and the site-specific, field-measured effect concentrations are based on the 95% upper confidence
limit of the arithmetic mean of COPECs in wetland soil within the area of stunted vegetation. The
information in this table can be summarized as follows:

Table 10-6. Comparison of field-measured, soil-based phytotoxicity effect concentrations for COPECs
to concentrations of COPECs in wetland soil from locations outside of the “Area of Readily Apparent
Harm”.

Concentration in Soil-Based Phytotoxicity Effect
Wetland Soil® Concentration (mg/kg, dry weight; Hazard
COPEC! (95% UCL) 95% LCL) Quotient
Copper 743 4295 0.17
Chromium 739 6495 0.11
Lead 306 661 0.46
Silver 34.7 172 0.20

'Only those COPECs for which soil concentrations exceeded literature-based
phytotoxicity screening values are presented. :
2Concentration in wetland soil outside of the “Area of Readily Apparent Harm”.

Since there are no exceedances of field-measured, soil-based phytotoxicity effect concentrations, there is
a negative indication of risk under these conditions. The magnitude of exceedances vary from low (HQ
values less than 0.1) to high (HQ values greater than 0.1). Thus, the magnitude of response for this
measurement endpoint is assigned a value of “low”.

10.5.4 Concurrence of Measurement Endpoints as they Relate to Assessment Endpoint #2

Since there is visible evidence at the site of stressed vegetation (discussed previously) that occupies the
same portion of the sije where the concentrations of COPECs are the greatest, the HQ values for
phytotoxicity in Tables 10-4 and 10-5 could potentially provide an indication of the causative agent.
However, since the toxicity of plants has not been as well studied as mammalian and avian species, there
is considerable uncertainty regarding the values selected for benchmarks. Most of the phytoxicity
benchmarks have been determined from studies on agriculturally-relevant species. No studies were
identified to derive benchmarks based on wetland plant species. Thus, due in part to these uncertainties,
the weight was determined to be “medium” for the measurement endpoints “A” and “B” literature-based
phytotoxicity benchmarks

Despite the areas of uncertainties discussed above, it appears that copper and chromium, and to a lesser
extent silver, lead, antimony, or some combination of these metals are the most likely causes of
phytotoxicity. It would be informative to have bioavailable concentrations of these metals in the soil
water and then compare these concentrations to phytotoxicity benchmarks that have been derived from
studies on plants grown in nutrient solutions. In addition, it would be informative to have chemical
specific toxicity values for representative wetland plant species to understand the relative sensitivity of
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these plants to metals. While this information is not presently available in the scientific literature, the
observation of stunted vegetation at the site can be viewed as an in situ phytoxicity test, in which native
wetland plant species are being exposed to COPECs that have been aged in the wetland soils under “real-
world” conditions (e.g., seasonal changes in temperature, inundation, bioavailability of COPECs, etc.).
As such, information on the concentrations of COPECs in soil from locations within the area of stunted
vegetation are potentially the most useful in determining a site-specific, soil-based phytotoxicity effect
concentration. Thus, the weight for measurement endpoint “C”, which utilized this site-specific
information, was determined to be “high”.

As discussed previously, MADEP guidance recommends consideration of three factors when evaluating
the concurrence of measurement endpoints: (1) the relative weights; (2) the attributes considered in the
weighting process; and (3) whether the endpoints are functionally related to each other so that one result
modifies another. In this case, the magnitudes of two of the measurement results (Measurement
Endpoints “B” and “C”) are the same (low) and the indications for risk are the same (negative) (Table 10-
7). This is countered to an extent by results for Measurement Endpoint “A” which indicates positive risk
with a high magnitude. However, the weight of Measurement Endpoint “C” is greater than that of
Measurement Endpoint “A”. Furthermore, the endpoints are functionally related to each other in that
Measurement Endpoint “C” provides a measure of site-specificity for bioavailability and native species
sensitivity, whereas the literature-based Measurement Endpoints “A” and “B” are based on laboratory
spiking studies with non-wetland species. In addition, both the cation exchange capacity and organic
carbon content measured in the wetland soils at this site are sufficiently great that bioavailability of
COPECs is likely to be greatly reduced. Taken together, based on the weight-of-evidence evaluation, it is
reasonable to conclude that there is no indication of risk of harm to wetland vegetation outside of the
“Area of Readily Apparent Harm”. '

Table 10-7. Weight of Evidence Summary for Assessment Endpoint #2

MEASUREMENT HIGH MEDIUM LOW
RESULT WEIGHT WEIGHT WEIGHT
Positive — High A
Positive — Low
Indeterminate
Negative — Low C B
Negative - High

Measurement endpoints: :
A = Literature-based phytotoxicity benchmark; given a low weight and produced a weak

positive result.

B = Plant tissue effect levels from the literature; given a low weight and produced a weak
negative result.

C = Field-measure phytotoxicity benchmark that incorporates site-specific bioavailability;
given a high weight and produced a strong negative result.

10.6 Assessment Endpoint #3 - Protection of Wetland Avian and Mammalian Wildlife
From Adverse Effects on Reproductive Success and Population Sustainability Related to
Exposure to COPECs in Surface Water, Sediment, Wetland Soil, and Food

MADEP guidance recommends that when the hazard quotient approach is utilized for characterizing risk
to wildlife that HQs are derived for both the lowest observed adverse effect level (LOAEL) and the no
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observable adverse effect level (NOAEL). Furthermore, MADEP states the following guidelines for
characterizing risk using NOAEL- and LOAEL-based HQs:

e When the site dose exceeds the LOAEL and the LOAEL-based HQ is greater than 1.0, it
is reasonable to conclude that the quotient evaluation method provides evidence of harm.

o  When the site dose is less than the NOAEL and NOAEL-based HQ is less than 1.0, the
risk assessor may reasonably conclude that the quotient evaluation method does not
provide evidence of harm.

o  When the site dose is greater than the NOAEL but less than the LOAEL, no conclusion
may be reached based on the predictive method alone, and additional assessment efforts
are necessary to determine whether the COPEC has harmed or may harm the
environment.

10.6.1 Mammalian Wildlife

Potential risks to mammalian receptors from exposure to COPECs outside the “Area of Readily Apparent
Harm” are characterized by use of a HQ approach (equation 10-3). HQs for each of the mammalian
receptors are presented (Tables 10-8 through 10-10). The exposure point concentrations are based on two
different exposure levels (low dose and high dose) as described previously. The information in these
tables can be summarized as follows:

¢ None of the mammalian receptors had NOAEL-based HQs greater than 1.0.
e None of the mammalian receptors had LOAEL-based HQs greater than 1.0.

Taken together, there is no indication of risk of harm to mammalian receptors. This is likely due to the
relatively small size of the area where concentrations of COPECs are elevated and possibly from limited
bioavailability of the COPECs at this site. In particular, available data demonstrate limited assimilation
and accumulation of COPECs into wetland vegetation and small mammals.
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Table 10-9. Estimation of doses and hazard quotients for meadow vole dietary exposure from outside the “Area of Readily Apparent Harm”.

Effects
g&w&t' Assessment Risk Characterization
Caoil Coeg Coater APDD? TRV? Hazard Quotient (HQ)*

(m% ww) | (mg/kg ww) IR (mg/L) (mg/kgBW/day) § (mg/kgBW/day) | NOAEL-based HQ | LOAEL-based HQ
COPEC  [IGeo. M Mean | IR, |% Abs.] Mean Max Kkg ww/day] Mean Max Low High JNOAEL| LOAEL §Low Dose|High Dose{ Low Dose| High Dose
Antimony 4 4 0.0001| 1% 0.0071 |0.0155 0.005 0.00250 10.00250] 0.0013 | 0.0022 4.4 NA 0.0003 0.0005 - -
 Arsenic 9 15 10.0001| 1% 0.0683 | 0.0885 0.005 0.00180 {0.00200] 0.0083 ]0.0107§ 0.42 1.26 0.0197 0.0256 0.0066 0.0085
Cadmium 2 3 0.0001]| 1% 0.0748 | 0.1049 0.005 0.00116 |0.00160] 0.0087 | 0.0122 1 10 - 0.0087 0.0122 0.0009 0.0012
Chromium 183 551 10.0001} 1% 0.5371 }0.7082 0.005 0.00510 |0.00540{ 0.0667 | 0.0962|| 24.5 NA 0.0027 0.0039 - -
Chrom.(6+*] 20 51 0.0001] 1% NA NA NA 0.00000 {0.00000] 0.0006 | 0.0014 22 NA 2.5E-05 | 6.3E-05 - -
Copper 243 585 10.0001| 1% 2.7597 | 4.2477 0.005 0.03000 10.03900| 0.3243 ] 0.5040 6.4 12.9 0.0507 0.0787 0.0251 0.0391
Lead 199 267 10.0001]| 1% 0.8490 | 1.4903 0.005 0.00080 {0.00110] 0.1020 |0.1768 8 80 0.0128 0.0221 0.0013 0.0022
Manganese 236 311 ]0.0001] 1% 39.7373 {52.3026] 0.005 0.77000 |1.00000] 4.6270 | 6.0883 88 284 0.0526 0.0692 0.0163 0.0214
Mercury 1 2 0.0001] 1% 0.0031 {0.0048 0.005 0.00010 |0.00010{ 0.0004 | 0.0006ff 13.2 40 2.9E-05 | 4.6E-05 - -
Silver 5 24 ]10.0001| 1% 0.0352 | 0.0619 0.005 0.00030 }0.00030] 0.0042 ]0.0077 24.67 74 0.0002 0.0003 0.0001 0.0001
Tin 12 22 }0.0001| 1% 0.3038 | 0.3318 0.005 0.01000 {0.01000] 0.0362 |0.0397] NA NA - - - -
'Vanadium 34 39 ]0.0001} 1% 0.1210 | 0.1909 0.005 0.00130 10.00130| 0.0148 }0.0229§ 1.67 5 0.0089 0.0137 0.0030 0.0046
Zinc 105 130 |0.0001} 1% 97712 |13.3360} 0.005 0.19000 |0.21000] 1.1391 | 1.5476 160 320 0.0071 0.0097 0.0036 0.0048
B(a)P 04 1.0 [0.0001] 25% NA NA NA NA NA 0.0003 | 0.0007p% 15.27 458 1.7E-05 | 4.6E-05 | 5.5E-06 | 1.5E-05
Total PCBs|| 1.4 29 }0.0001| 85% | 0.0026 }0.0038| 0.005 NA NA | 0.0036 |{0.0072ff 0.32 1.5 0.0112 | 0.0225 | 0.0024 | 0.0048

'Exposure factors from Tables 8-2 and 8-3.

Credimentssoit = (Csoit * 0-5) + (Coedimen * 0.5) to account for incidental ingestion of both flooded soil and sediment
2APDD = (((TRy0i * Cgiet*absorption factor from soil) + (IRyeq * Cyeg*absorption factor from food) + (IRyater * Coser*absorption factor from water))/BW)*site use factor

For metals, the percent absorption is assumed to be 100% from water, 50% from vegetation (see text), and 1% from soil (Pascoe et al., 1994).

For PAHs, the percent absorption is assumed to be 25% from soil (Hack and Selenka, 1996)

For PCBs, the percent absorption is assumed to be 100% from water, 100% from vegetation, and 85% from soil (Fries et al., 1989).
The chemical concentration in vegetation was calculated as 75% from plants above soil and 25%from plants below soil.

TRV = Toxicity Reference Value from Table 9-4.
*HQ = Dosegi/ TRV

NA = Not analyzed
B(a)P is an abbreviation for benzo(a)pyrene and was used as a surrogate for total PAH toxicity.
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Table 10-9. Estimation of doses and hazard quotients for meadow vole dietary exposure from outside the “Area of Readily Apparent Harm”.

Effects
g&w&t' Assessment Risk Characterization
Caoil Coeg Coater APDD? TRV? Hazard Quotient (HQ)*

(m% ww) | (mg/kg ww) IR (mg/L) (mg/kgBW/day) § (mg/kgBW/day) | NOAEL-based HQ | LOAEL-based HQ
COPEC  [IGeo. M Mean | IR, |% Abs.] Mean Max Kkg ww/day] Mean Max Low High JNOAEL| LOAEL §Low Dose|High Dose{ Low Dose| High Dose
Antimony 4 4 0.0001| 1% 0.0071 |0.0155 0.005 0.00250 10.00250] 0.0013 | 0.0022 4.4 NA 0.0003 0.0005 - -
 Arsenic 9 15 10.0001| 1% 0.0683 | 0.0885 0.005 0.00180 {0.00200] 0.0083 ]0.0107§ 0.42 1.26 0.0197 0.0256 0.0066 0.0085
Cadmium 2 3 0.0001]| 1% 0.0748 | 0.1049 0.005 0.00116 |0.00160] 0.0087 | 0.0122 1 10 - 0.0087 0.0122 0.0009 0.0012
Chromium 183 551 10.0001} 1% 0.5371 }0.7082 0.005 0.00510 |0.00540{ 0.0667 | 0.0962|| 24.5 NA 0.0027 0.0039 - -
Chrom.(6+*] 20 51 0.0001] 1% NA NA NA 0.00000 {0.00000] 0.0006 | 0.0014 22 NA 2.5E-05 | 6.3E-05 - -
Copper 243 585 10.0001| 1% 2.7597 | 4.2477 0.005 0.03000 10.03900| 0.3243 ] 0.5040 6.4 12.9 0.0507 0.0787 0.0251 0.0391
Lead 199 267 10.0001]| 1% 0.8490 | 1.4903 0.005 0.00080 {0.00110] 0.1020 |0.1768 8 80 0.0128 0.0221 0.0013 0.0022
Manganese 236 311 ]0.0001] 1% 39.7373 {52.3026] 0.005 0.77000 |1.00000] 4.6270 | 6.0883 88 284 0.0526 0.0692 0.0163 0.0214
Mercury 1 2 0.0001] 1% 0.0031 {0.0048 0.005 0.00010 |0.00010{ 0.0004 | 0.0006ff 13.2 40 2.9E-05 | 4.6E-05 - -
Silver 5 24 ]10.0001| 1% 0.0352 | 0.0619 0.005 0.00030 }0.00030] 0.0042 ]0.0077 24.67 74 0.0002 0.0003 0.0001 0.0001
Tin 12 22 }0.0001| 1% 0.3038 | 0.3318 0.005 0.01000 {0.01000] 0.0362 |0.0397] NA NA - - - -
'Vanadium 34 39 ]0.0001} 1% 0.1210 | 0.1909 0.005 0.00130 10.00130| 0.0148 }0.0229§ 1.67 5 0.0089 0.0137 0.0030 0.0046
Zinc 105 130 |0.0001} 1% 97712 |13.3360} 0.005 0.19000 |0.21000] 1.1391 | 1.5476 160 320 0.0071 0.0097 0.0036 0.0048
B(a)P 04 1.0 [0.0001] 25% NA NA NA NA NA 0.0003 | 0.0007p% 15.27 458 1.7E-05 | 4.6E-05 | 5.5E-06 | 1.5E-05
Total PCBs|| 1.4 29 }0.0001| 85% | 0.0026 }0.0038| 0.005 NA NA | 0.0036 |{0.0072ff 0.32 1.5 0.0112 | 0.0225 | 0.0024 | 0.0048

'Exposure factors from Tables 8-2 and 8-3.

Credimentssoit = (Csoit * 0-5) + (Coedimen * 0.5) to account for incidental ingestion of both flooded soil and sediment
2APDD = (((TRy0i * Cgiet*absorption factor from soil) + (IRyeq * Cyeg*absorption factor from food) + (IRyater * Coser*absorption factor from water))/BW)*site use factor

For metals, the percent absorption is assumed to be 100% from water, 50% from vegetation (see text), and 1% from soil (Pascoe et al., 1994).

For PAHs, the percent absorption is assumed to be 25% from soil (Hack and Selenka, 1996)

For PCBs, the percent absorption is assumed to be 100% from water, 100% from vegetation, and 85% from soil (Fries et al., 1989).
The chemical concentration in vegetation was calculated as 75% from plants above soil and 25%from plants below soil.

TRV = Toxicity Reference Value from Table 9-4.
*HQ = Dosegi/ TRV

NA = Not analyzed
B(a)P is an abbreviation for benzo(a)pyrene and was used as a surrogate for total PAH toxicity.

10-12



November 09, 2001

Table 10-10. Estimation of doses and hazard quotients for muskrat dietary exposure from outside the “Area of Readily Apparent Harm”.

Effects
Exposure Assessment’ Assessment | Risk Characterization
Coedimentasoil Creg Coater APDD? TRV® Hazard Quotient (HQ)*

| (mgkgww ( ww) IR (mg/L) (ng/kgBW/day) § (mg/kgBW/day) | NOAEL-based HQ | LOAEL-based HQ
COPEC  |iGeo. Mﬁ Mean | Ry |% Abs.| Mean | Max [kgww/day] Mean | Max | Low | High |NOAEL|LOAELLow Dose[High Dose] Low Dose|High Dose
Antimony 4 4 | 0012 ] 2.5% | 0.0185 |0.0409] 037 [ 0.00250 [0.00250] 0.0038 [0.0072] 4.4 NA f 0.0009 | 0.0016 - -
Arsenic 9 12 {0012 | 25% | 01952 |0.2495| 037 | 0.00180 {0.00200] 0.0311 |0.0398] 042 | 1.26 § 0.0740 | 0.0947 | 0.0247 | 0.0316
Cadmium 2 3 | 0012 25% | 02152 (02966 037 | 0.00116 |0.00160] 0.0325 |o0.0448] 1 10 § 00325 | 0.0448 | 0.0032 | 0.0045
Chromium || 127 | 345 | 0.012 | 2.5% | 0.9065 |1.1281} 037 | 0.00510 [0.00540| 0.1650 |0.2500[ 245 | NA || 0.0067 | 0.0102 - -
Chrom.(6+)] 20 s1 |o0o012]|25% | NA NA NA | 0.00000 |0.00000] 0.0049 |o0.0122f 22 NA [ 0.0002 | 0.0006 - -
Copper 176 | 403 | 0.012 | 2.5% | 4.7456 |8.9682| 0.37 | 0.03000 [0.03900] 0.7461 | 14259 6.4 | 129 | 01166 | 02228 | 0.0578 | o0.1105
Lead 122 185 | 0012 | 2.5% | 24833 |43621| 037 | 0.00080 [0.00110] 0.3967 |0.6901] 8 80 || 0.0496 | 0.0863 | 0.0050 | 0.0086
Manganese]| 478 | 515 | 0.012 | 2.5% | 52.6722 [62.9857] 037 | 0.77000 |1.00000{ 7.9487 |9.4956] 88 284 | 0.0903 | 0.1079 | 0.0280 | 0.0334
Mercury 1 2 | o012 25% { 00074 00123 037 | 0.00010 [0.00010{ 0.0013 |0.0022f 13.2 40 |} 0.0001 | 0.0002 | 0.0000 | 0.0001
Silver 5 24 | 0012 | 25% | 0.0595 }0.0920f 0.37 | 0.00030 [0.00030] 0.0101 ]0.0193 2467 | 74 |} 0.0004 | 0.0008 | 0.0001 | 0.0003
Tin 13 18 | 0012 | 25% | 0.6365 |0.6993] 037 | 0.01000 [0.01000] 0.0978 |0.1084] NA | NA - - - -
Vanadium | 33 36 | 0012 | 2.5% | 03555 [0.5632] 037 | 0.00130 [0.00130{ 0.0607 |0.0921f 1.67 5 0.0363 | 0.0551 | 0.0121 | 0.0184
Zinc 107 120 | 0.012 | 2.5% | 22.8811 [32.2163) 037 | 0.19000 [0.21000] 3.4217 |4.8073] 160 | 320 | 0.0214 | 0.0300 | 0.0107 | 0.0150
B(a)P 0 1 |o0012] 25% | Na NA NA NA NA | 0.0252 | 0070 | 1527 | 458 | 0.0017 | 0.0046 | 0.0006 | o0.0015
Total P[CBs| 2 3 | 0012 85% | 0.0071 |0.0104] 037 NA NA | 0.0182 |o.0281] 032 1.5 || 0.0569 | 0.0877 | 0.0121 | 0.0187

'Exposure factors from Tables 8-2 and 8-3.

Credgimenttsoil = (Caot * 0-5) + (Cegimen * 0.5) to account for incidental ingestion of both flooded soil and sediment

When no sediment data was available Cyegimengsoit = Csoir When only one sediment value was available this maximum value was used in place of the geometric mean or mean.
2APDD = (((IR,o1 * Cgier*absorption factor from soil) + (IRyeg * Cyeg*absorption factor from food) + (IR yater * Covase*absorption factor from water))/BW)*site use factor
For metals, the percent absorption is assumed to be 100% from water, 50% from vegetation (see text), and 2.5% from soil (Pascoe et al., 1994).
The chemical concentration in vegetation was calculated as 25% from plants above soil and 75% from plants below soil.

For PAHs, the percent absorption is assumed to be 25% from soil (Hack and Selenka, 1996)

For PCBs, the percent absorption is assumed to be 100% from water, 100% from vegetation, and 85% from soil (Fries et al., 1989).

*TRYV = Toxicity Reference Value from Table 9-4.
*HQ = Doseg / TRV '

NA = Not analyzed

B(a)P is an abbreviation for benzo(a)pyrene and was used as a surrogate for total PAH toxicity.
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10.6.2 Avian Wildlife

Potential risks to avian receptors from exposure to COPECs outside the “Area of Readily Apparent
Harm” are characterized by use of a HQ approach (equation 10-3). HQs for each of the mammalian
receptors are presented (Tables 10-11 and 10-12). The exposure point concentrations are based on two
different exposure levels (low dose and high dose) as described previously. The information in these
tables can be summarized as follows: .

e None of the avian receptors had NOAEL-based hazard quotients greater than 1.0 for any of the
COPECs.

e None of the avian receptors had LOAEL-based hazard quotients greater than 1.0 for any of the
COPECs.

Taken together, there is no indication of risk of harm to avian receptors. This is likely due to the relatively
small size of the area where concentrations of COPECs are elevated and possibly from limited
bioavailability of the COPECs at this site. In particular, available data demonstrate very limited
assimilation and accumulation of COPECs into wetland vegetation and small mammals.
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Table 10-11. Estimation of doses and hazard quotients for mallard dietary exposure from outside the “Area of Readily Apparent Harm”.

Effects
Exposure Assessment’ Assessment Risk Characterization

Coctimentasoil Cueg Coater APDD? TRV? Hazard Quotient (HQ)"

‘mg/kg ww) ( ww) IR, (ug/L) (mg/kgBW/day) §i (mg/kgBW/day) | NOAEL-based HQ | LOAEL-based HQ
COPEC 0. Mean| Mean | IR,y |% Abs.| Mean Max ykgww/day] Mean Max Low High JNOAEL | LOAEL j|Low Dose|High Dosej Low Dose| High Dose
Antimony 4 4 ]0.00031] 10% | 0.0105 | 0.0231 0.1 0.00250 |0.00250] 0.0008 }0.0015| NA NA - - - -
Arsenic 9 12 {0.00031] 10% | 0.1064 |0.1368 0.1 0.00180 }0.00200] 0.0057 |0.0073§ 10 40 0.0006 | 0.0007 | 0.0001 0.0002
Cadmium 2 3 j0.00031] 10% | 0.1169 | 0.1624 0.1 0.00116 {0.00160] 0.0060 | 0.0083j 1.45 20 0.0041 | 0.0057 | 0.0003 0.0004
Chromium 127 345 [0.00031] 10% | 0.6479 | 0.8342 0.1 0.00510 |0.00540] 0.0367 | 0.0527) 1.6 NA 0.0229 | 0.0330 - -
Chrom. (6+ 20 51 10.00031] 10% NA NA NA 0.00000 |0.00000] 0.0006 }0.0016]] NA NA - - - -
Copper | 176 403 ]0.00031] 10% | 3.3554 }5.6639 0.1 0.03000 |0.03900] 0.1751 {0.2982) 9.4 123 0.0186 | 0.0317 | 0.0142 | 0.0242
Lead 122 185 [0.00031] 10% | 1.3393 |2.3518 0.1 0.00080 [0.00110} 0.0708 |0.1234| 0.23 2.26 0.3078 | 0.5365 { 0.0313 0.0546
Manganesef| 478 515 ]0.00031] 10% | 43.6177 |55.5075 0.1 0.77000, {1.00000] 2.2450 |2.8554} 195 589 0.0115 | 0.0146 | 0.0038 | 0.0048
Mercury 1 2 ]0.00031] 10% | 0.0044 | 0.0071 0.1 0.00010 j0.00010] 0.0003 | 0.0004] 0.09 0.18 0.0028 | 0.0046 | 0.0014 | 0.0023
Silver 5 24 10.00031] 10% | 0.0425 |[0.0709 0.1 0.00030 {0.00030] 0.0023 | 0.0043} 14 2.77 0.0016 | 0.0031 | 0.0008 | 0.0016
Tin 13 18 |0.00031] 10% | 0.4036 | 0.4420 0.1 0.01000 10.01000] 0.0212 |0.0233) NA NA - - - -
Vanadium 33 36 [0.00031] 10% | 0.1914 ]0.3026 0.1 0.00130 |0.00130] 0.0107 ] 0.0163] 114 342 0.0009 | 0.0014 | 0.0003 0.0005
Zinc 107 120 |0.00031] 10% | 13.7042 |19.0000 0.1 0.19000 |0.21000] 0.7007 }0.9672|| -2.9 26.2 0.2416 | 0.3335 | 0.0267 | 0.0369
PAHs 4 12 [0.00031] 25% NA NA NA .NA NA | 0.0003 |0.0009f 40 400 Y 8.3E-06 | 2.3E-05 | 8.3E-07 | 2.3E-06
Total PCBsf| 2 3 10.00031] 85% | 0.0039 | 0.0058 0.1 NA NA | 0.0009 |0.0014] 0.12 0.36 0.0076 | 0.0115 | 0.0025 | 0.0038

lI-‘zxposum factors from Tables 8-2 and 8-3.

Crodimenttsoil = (Caoit * 0-5) + (Coediment * 0.5) to account for incidental ingestion of both flooded soil and sediment.

‘When no sediment data was available Cogimemesoit = Cooir When only one sediment value was available this maximum value was used in place of the geometric mean or mean.
2APDD = (IR, * Cier*absorption factor from soil) + (IRyeg * Cyez*absorption factor from food) + (IRyyer * Comer*absorption factor from water))/BW)*site use factor

For metals, the percent absorption is assumed to be 100% from water, 50% from vegetation (see text), and 10% from soil (Pascoe et al., 1994).

The chemical concentration in vegetation was calculated as 60% from plants above soil and 40% from plants below soil (this 40% value is the sum of 25% of diet from plants
below soil and 15% invertebrates assumed to have residue concentrations equal to those of plants below soil - see text for details).
For PAHs, the percent absorption is assumed to be 25% from soil (Hack and Selenka, 1996)
For PCBs, the percent absorption is assumed to be 100% from water, 100% from vegetation, and 85% from soil (Fries et al., 1989).
TRV = Toxicity Reference Value from Table 9-5.
*HQ = Dosege/ TRV
NA = Not analyzed
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Table 10-12. Estimation of doses and hazard quotients for red tail hawk dietary exposure from outside the “Area of Readily Apparent Harm”.

Effects
Exposure Assessméntl Assessment Risk Characterization
Corey Comer | APDD’ TRV? Hazard Quotient (HQ)"
(mg/kg ww) (mg/L) (mg/kgBW/day]l (mg/kgBW/day) [[NOAEL-based HQ| LOAEL-based HQ

COPEC max IRpey | % Abs. | Max High NOAEL | LOAEL High Dose High Dose
Antimony 0.00250 7.1E-05 NA NA - -
Arsenic 0.00200 0.0001 2 8 2.8E-05 7.1E-06
Cadmium 0.0791 0.109 100% | 0.00160 0.0039 0.29 4 0.0134 0.0010
Chromium 2.96 0.109 100% | 0.00540 0.1433 1.6 NA 0.0896 -
Chrom. (6+) 0.00000 0.0000 NA NA - -
Copper 4.51 0.109 100% | 0.03900 0.2196 9.4 12.3 0.0234 0.0179
Lead 0.275 0.109 100% | 0.00110 0.0133 0.23 226 0.0579 0.0059
Manganese 24.6 0.109 100% | 1.00000 1.2191 195 589 0.0063 0.0021
Mercury 0.0305 0.109 100% | 0.00010 0.0015 0.09 0.18 0.0164 0.0082
Silver 0.00030 8.5E-06 0.08 0.17 - -
Tin 0.01000 0.0003 NA NA - -
Vanadium 0.00130 3.7E-05 2.28 6.8 1.6E-05 -
Zinc 339 0.109 100% | 0.21000 1.6446 29 26.2 0.5671 0.0628
PAHSs NA 0.0000 8 80 - -
Total PCBs 0.005 0.109 100% NA 0.0002 0.12 0.36 -~ 0.0020 0.0007

'Exposure factors from Tables 8-2 and 8-3.

2APDD = (IRprey * Cprey) + (MRyater * Covater))/BW)*site use factor
For metals, the percent absorption is assumed to be 100% from water and 50% from diet (see text.).
For PCBs, the percent absorption is assumed to be 100% from diet.
The site use factor for red-tailed hawks is assumed to be 50%.

3TRV = Toxicity Reference Value from Table 9-5.

*HQ = Dosegi / TRV

NA = Not analyzed
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10.7 Consideration of Risk of Harm to Rare, Threatened, and Endangered Species

Since rare species (i.e., river bulrush) and state-listed threatened species (i.e., Northern Harrier Hawk)
have been observed on site and it is possible that other rare, threatened, and endangered species can
potentially occur at this site, this ERC considers the potential risk of harm to these species. For species
other than the river bulrush and Northern Harrier Hawk, the current ERC is considered to be sufficiently
conservative to be protective of these other potentially occurring species.

10.7.1 River Bulrush

In regards to the river bulrush, the occurrence at this site is primarily adjacent to the Sudbury River and its
occurrence does not coincide with the locations within the “Area of Readily Apparent Harm” (refer to
Figure 2 of Appendix A for a map showing the locations of river bulrush. The river bulrush was observed
to be present in substantial numbers at each population area surveyed.

10.7.2 Northern Harrier Hawk

In regards to the Northern Harrier Hawk, the observations indicated that this individual was migrating and
not a resident at this site. Nevertheless, the red-tailed hawk was evaluated for this site, which can act as a
surrogate species for the Northern Harrier Hawk, and the predicted risks were substantially less than 1.0.

10.8 Evaluation of Effects Considered as Indicators of Environmental Harm

The MCP lists several effects that are considered “indicators of environmental harm”, including absence
of a species, reduction of a population or subpopulation, change in the structure of a community,
bioconcentration/bioaccumulation, habitat degradation or destruction, loss or diminshment of ecological
function. These “effects” are to be evaluated at sites to determine whether a significant risk of harm is
present. The only “effects” from this list which were considered to apply to this site are
bioconcentration/bioaccumulation and habitat degradation or destruction, both of which will be discussed
below.

10.8.1 Bioconcentration/Bioaccumulation

Bioaccumulation, or the potential for bioaccumulation, is not by itself indicative of toxic effects. The
MCP states that a “decision to consider bioaccumulation as an indication of harm, rather than just
evidence of exposure, should be based on the toxicity of the chemical in question and the likely fate of the
chemical in the food web.” In this ERC, consideration was made for the potential bioaccumulation of
PCBs to upper trophic level predators, such as mink, great blue herons, and bald eagles. However, other
factors were considered such as the relatively small size of the PCB hot spot at the site, the location of the
PCB hot spot which is within the “Area of Readily Apparent Harm”, the transitional nature of this site to
support aquatic and terrestrial organisms, and the nearly ubiquitous low level PCB concentrations in fish
(approximately 1-4 mg/kg) measured in the late 1980°s throughout the entire Sudbury and Concord River
watersheds. Thus, it was determined that the amount of PCBs available for bioaccumulation to upper
trophic level receptors at this site is likely to be low. Furthermore, it would be difficult to attribute the
proportion of body burden attributable to uptake at the site. While extensive food chain modeling was not
applied at this site to predict exposure of PCBs to upper trophic level receptors such as mink, great blue
herons, and bald eagles, receptors were selected that are predicted to have relatively great exposures and
home ranges that are more appropriate to the size of the site.
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10.8.2 Habitat Degradation Or Destruction

MCP guidance defines habitat degradation or destruction as “the reduction of the area of a habitat or the
reduction or elimination of structural vegetative components or critical features typically found within a
habitat type.... The observation of stressed vegetation is evidence of habitat degradation, if the stress is
due to contamination at the site.” Thus, the observation at this site of a zone of stunted vegetation that
correlates well to the hot spot of COPECs at this site fulfills the definition of habitat degradation and is,
- therefore, evidence of environmental harm (refer to the section on the Stage I Screening-Level ERC for
more details).
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11.0 CONCLUSIONS AND UNCERTAINTIES

11.1 Purpose

The purpose of this section is to integrate and summarize the overall conclusions of the environmental
risk characterization and to present the results of an uncertainty analysis, to indicate the sources,
magnitude, and direction of uncertainties that potentially influence the interpretation of results.

11.2. Conclusions

The conclusions regarding risk to ecological resources at the wetlands near the former Raytheon facility
are based on the following:

¢ Site background and conceptual site model.

e Visible evidence of habitat degradation and the presence of an “Area of Readily Apparent Harm”.
e Analytical data collected in 1998-2000.

e The assessment of exposure and effects.

e The characterization of potential risk presented.

o The integration of different lines of evidence collected for certain assessment endpoints.

e The evaluation of uncertainty.

11.2.1 Assessment Endpoint #1 - Protection of Fish, Amphibians, and Aquatic Invertebrate
Communities From Adverse Effects Related to Exposure to COPECs in Surface Water '

The assessment endpoint, protection of fish, amphibians, and aquatic invertebrate communities from
adverse effects related to exposure to COPECs in surface water, was evaluated by using two measurement
endpoints: (A) comparison of concentrations of COPECs in surface water from the wetland to surface
water benchmarks that are designed to be protective of aquatic organisms; and (B) comparison of
concentrations of COPECs in surface water from the wetland to surface water benchmarks literature-
derived studies that were conducted under conditions of similar bioavailability to those at the site. Surface
water data are available for two different times of year allowing a temporal assessment of potential risk in
locations outside of the “Area of Readily Apparent Harm”. Temporally, there is a difference in potential
risk to aquatic organisms at this site. During conditions of low water at the site, there are exceedances of
water quality criteria (WQC) for copper and zinc. However, during conditions of inundation at the site
(e.g., typically during the late winter, early spring and periodic times of flooding), there are no
exceedances of WQC. This temporal difference is important because the timing of inundation coincides
with potential spawning activities of fish from the Sudbury River.

While there are exceedances of WQC and thus, there exists a potential risk of adverse effects, the
magnitude of potential risk is low. Thus, it is not likely that population-level effects are actually
occurring because of the conservative nature of WQC. Moreover, the available information for
Measurement Endpoint “B” suggests that bioavailability and toxicity of copper and, to a lesser degree,
zinc, are reduced due to dissolved organic matter present in the surface water of the wetland. Thus, taken
together in a weight-of-evidence approach, there is no indication of risk of harm to aquatic receptors.
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11.2.2 Assessment Endpoint #2 - Protection of Wetland Vegetation From Adverse Effects Related
to Exposure to COPECs in Wetland Soils.

The assessment endpoint, protection of wetland vegetation from adverse effects related to exposure to
COPECs in wetland soils, was evaluated by using three measurement endpoints: (A) comparison of
concentrations of COPECs in wetland soils to phytotoxicity benchmarks that are designed to be protective
of vegetation; (B) comparison of concentrations of COPECs in plant tissues from the wetland to plant
tissue residue effect levels that are designed to be protective of vegetation; and (C) comparison to site-
specific, field-measured effect concentrations of COPECs in soil that are found in the area of stunted
vegetation. The two most likely COPECs responsible for the observed adverse effects on vegetation at
the site are copper and chromium, based on the magnitude of the literature-based hazard quotients for.
phytotoxicity. However, due to the presence of multiple COPECs and uncertainty associated with
phytotoxicity benchmark data, it is difficult to assess cause and effect relationships. Taken together, based
on the weight-of-evidence evaluation, it is reasonable to conclude that there is no indication of risk of
harm to wetland vegetation outside of the “Area of Readily Apparent Harm”.

11.2.3 Assessment Endpoint #3 - Protection of Wetland Avian and Mammalian Wildlife From
Adverse Effects on Reproductive Success and Population Sustainability Related to Exposure to
COPEC:s in Surface Water, Sediment, Wetland Soil, and Food

The assessment endpoint, protection of wetland avian and mammalian wildlife from adverse effects on
reproductive success and population sustainability related to exposure to COPECs in surface water,
sediment, wetland soil, and food, was evaluated by using a single measurement endpoint: comparison of
the average predicted daily doses of COPECs from surface water, sediment, wetland soil, and food to
toxicity reference values that are designed to be protective of avian and mammalian wildlife. None of the
wildlife receptors considered in this ERC had calculated hazard quotients greater than 1.0 based on the
NOAEL or the LOAEL. Taken together, there is no indication of risk of harm to avian and mammalian
receptors. i :

11.3 Evaluation of Uncertainty

The evaluation of uncertainty involves identifying sources of uncertainty associated with the ERC process
that may potentially affect the conclusions of the assessment. According to USEPA (1996), “uncertainty
analyses increase credibility by explicitly describing the magnitude and direction of uncertainties, and
they provide that basis for efficient data collection of or application of refined methods.” Specifically,
uncertainty associated with measurement endpoint results translates into uncertainty associated with the
conclusions regarding risk at the wetlands near the former Raytheon facility. To reduce the potential for
uncertainty resulting in underestimates of actual risks at this site, conservative methods and procedures
were used throughout the assessment.

Sources of uncertainty have been identified based on a review of the assumptions used to develop this
ERC (e.g., assumptions associated with exposure parameter inputs to the dose equation and review of
environmental data collected at this site). Identified sources of uncertainty are discussed in the following
sections, which are organized according to the components of the ERC.

11.3.1 Uncertainty Associated With the Problem Formulation

11.3.1.1 Selection of Receptors

Risks to wildlife are assessed for a small subset of species that are likely to be present in the wetlands
near the former Raytheon facility. The receptors that were selected for quantitative risk evaluation
represent a range of taxonomic groups and foraging characteristics. An effort was made to select receptor
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species representing the greatest probability of exposure. However, these species may be either more or
less sensitive to chemical exposures than other species within the area. In particular, the relative
sensitivities of reptiles and amphibians, as compared to aquatic organisms or other wildlife at the site, are
unknown due to a lack of high quality toxicity data. It is assumed that the risks to these organisms are at
least qualitatively similar to risks of other wildlife at this site. Specifically, it is assumed that water
quality criteria are sufficiently protective of amphibians, such that if WQC and related benchmarks are
exceeded , then there exists some potential risk of adverse effects to amphibians. However, due to the
conservative nature of WQC, it is likely that the risk to aquatic organisms, including amphibians is
overestimated by using this approach.

11.3.1.2  Selection of Exposure Pathways

The exposure pathways selected for evaluation in this ERC are not inclusive of every potential exposure
pathway for all ecological receptors. Additional pathways may be considered such as dermal exposures
for wildlife and sediment ingestion for fish. However, it is likely that these pathways are minor relative to
those pathways that were evaluated in this ERC.
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11.3.2 Uncertainty Associated With the Exposure Assessment

11,3.2.1 Data on Chemical Concentrations in Sediment and Soil

The concentrations of COPECs in sediment and soil have been well characterized spatially for most
COPECs. In the case of PCBs, some of the samples were split and analyzed separately by either Aroclor
analysis or by congener-specific analysis. The results of these analyses indicate that there is a bias with
the Aroclor analysis in which the results of the Aroclor analysis overestimate the actual concentration of
total PCBs (determined by congener analysis) when the concentration of total PCBs is greater than 2.5
mg/kg, dry weight. While the congener-specific analysis is a more accurate and appropriate analytical
method for PCBs, especially for environmentally weathered mixtures such as the PCBs at this site, it is
not economically feasible to routinely analyze all samples at a site using this methodology.

The limitations of Aroclor based analysis methods are well known and documented by the USEPA
Region 9 BTAG, (1998). It is generally recommended that both congener-specific and Aroclor analyses
be utilized to some extent to evaluate a site, although several factors should be considered to determine
the most appropriate sampling and analysis strategy (USEPA Region IX, 1998; Blankenship et al., 2000).
For Aroclor-based analysis and quantitation, PCB mixtures are extracted from environmental samples and
only a few congener peaks are compared to commercial Aroclor mixtures. However, because the relative
ratios of individual PCB congeners are constantly being altered in environmental matrices (water, soils
and sediments) as a result of environmental weathering processes (including differential congener
degradation, accumulation, metabolism and elimination processes), the congener mixtures found in
environmental samples usually bear little similarity to the original technical mixtures. Thus, attempting to
quantify these environmentally altered PCB mixtures as original technical PCB mixtures, which they no
longer resemble, introduces great uncertainties (Blankenship et al., 2000).

The total PCB concentrations determined at this site from the PCB congener-specific analysis ranged
from 1.0 to 285 mg/kg, dry weight compared to 1.3 to 540 mg/kg, dry weight for Aroclor analysis. A
regression analysis was conducted for the PCB congener analyses and the Aroclor-based analyses. The
relationships between congener-specific analyses and Aroclor based analyses appear to be concentration-
dependent. At concentrations less than 2.5 mg/kg, (dry weight), there is good agreement between the two
methods (R? = 0.98). At concentrations greater than 2.5 mg/kg, total PCBs as measured by the Aroclor-
based analysis are consistently greater in concentration (by approximately 10-50%) than the congener-
specific analysis.

The only exception to the observed relationships between Aroclor-based and congener-specific results is
location T-10-3. The PCB concentration at T-10-3 is questionable since the Aroclor analysis resulted in a
PCB concentration of 61 mg/kg and the congener-specific analysis resulted in a PCB concentration of 1.9
mg/kg. Since congener-specific analysis is more technically defensible than Aroclor-based analyses for
weathered environmental samples, the congener-specific result is used in this ERA. The uncertainty
associated with which PCB result to use is relatively insignificant (i.e., the hazard quotients are all less
than 1.0 for PCBs) and does not alter the conclusions of this ERA. Also, since the location of T-10-3 is
isolated and not contiguous to the remaining ARAH, the T-10-3 location is not included in the ARAH,
but is included in the Stage II ERC and Phase III evaluation.
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Figure 11-3. Correlational analysis of two
different methods to analyze and quantify total
PCBs using only data with concentrations of
PCBS less than 2.5 mg/kg from split samples of
sediment and soil from the wetlands near the
former Raytheon facility. A total of 4 samples
were analyzed. The regression equation is:

y = 1.587(x) -9.6412 y =0.7493(x) + 0.5711

(R*=0.8715) (R?=0.9814)

~ Figure 11-2, Correlational analysis of two
different methods to analyze and quantify total
PCBs using all data from split samples of
sediment and soil from the wetlands near the
former Raytheon facility. A total of 14 samples
were analyzed. The regression equation is:

11.3.2.2  Exposure (or Dose) Calculations

Because the parameters used to estimate dose (intake) are not always empirically measured, conservative
assumptions were made which could result in an overestimate of exposure and risks. The dose
calculations consider the concentration of the COPECs at an exposure point, physical characteristics of
the receptor, and the exposure frequency. Each of these three inputs has varying degrees of uncertainty.

The concentrations of COPECs at the exposure point were directly measured (i.e. site-specific vegetation
tissue, soil, and sediment data were collected). Therefore, food-chain analysis and modeling, which are
typically sources of uncertainty, were not conducted. However, there were uncertainties associated with
the assumptions made about the percent diet composition and foraging behavior of the receptors. The diet
for the birds considered at the wetlands near the former Raytheon facility can be highly variable (e.g.,
freshwater mollusks, polychaete worms, crustaceans, and vegetation), is dependent on specific prey
availability, and includes a foraging range that varies with water levels and seasonal conditions at this site
(refer to sections 3.5, 4.3.2, 4.3.3, 7.0, and 8.0 for more details). The assumption that the birds’ diet
consists solely of prey items from this site is, therefore, likely an over-estimate of exposure.

Foraging habits that impact the amount of incidental sediment ingested also directly affect exposure
estimates. The percent sediment ingestion for the wildlife receptors were taken from the literature. The
natural history information gathered for the wildlife receptors indicate that estimates for percent diet
composition of prey and sediment are based on very conservative assumptions.
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In addition, a fractional absorption value was included in the exposure model to account for the fraction
of the oral dose that is absorbed through the gastrointestinal tract. The fractional absorption values were
determined from the scientific literature and were specific to each class of COPECs (e.g., metals, PAHs,
and PCBs) and to each exposure medium (e.g., soil and sediment ingestion, normal diet, water ingestion).
This fractional absorption factor is especially important for incidental ingestion of sediments and soils. It
has been shown that short-term contact of soil with a compound that can be sorbed reduces its
bioavailability. For metals, the percent absorption was assumed to be 100% from water and 50% from
vegetation. Support for the use of 50% absorption for metals in the diet comes from EPA reports on the
toxicological reviews of metals for the Integrated Risk Information System (IRIS) and other sources in
which the oral and gastrointestinal absorption was reported to be 0.4-3% for chromium, 2.5% for
cadmium, 10% for silver (Eisler , 1996), 20-30% for zinc (Eisler, 1993). Thus, the estimate of 50%
absorption of metals from foods is likely to overestimate the actual exposure.

The percent absorption of metals from sediment and soil was assumed to be 1% for meadow voles and
2.5% for muskrats, white-tailed deer, and mallards (Pascoe et al., 1994a). The assumed value of 1%
bioavailability from soil for meadow voles is actually 10-fold greater than the measured value by these
same authors (Pascoe et al., 1994b) to account for potential uncertainty due to differences in soil
parameters for the site described in this ERC. The value of 2.5% reflects additional conservatism to
account for potential species-specific differences in bioavailability (absorption) of metals from soils.
Thus, the estimate of 2.5% absorption of metals from soils and sediments is likely to overestimate that
actual exposure.

Little information is available on the absorption factor or matrix effect for organic chemicals in soils,
especially aged chemicals in soils. There is considerable evidence that demonstrates a reduction in
bioavailability for persistent organics with increasing time (e.g., aging) in soil. For PAHs
(benzo(a)pyrene is used in this ERC as a surrogate for total PAHs for mammals), the percent absorption is
assumed to be 100% from water and 25% from soil. Support for the use of 25% absorption from soil is
from a study that utilized a digestive tract model to measure the percent mobilization of PAHs from soils
(Hack and Selenka, 1996). For PCBs, the percent absorption is assumed to be 100% from water, 100%
from normal diet, and 85% from sediment and soil (Fries et al., 1989). The actual absorption of organic
compounds from ingestion of food, soil, and sediments is likely to be less than these assumed values and,
therefore, the exposure estimates are likely to overestimate actual exposure.

Physical characteristics of the receptors that affect the dose calculation include body weight and daily
ingestion rate. A mean body weight for the wildlife receptors were derived by taking a mean from '
available literature. However, since body weights vary widely, and lower (or greater) body weights are
associated with greater (or lower) calculated doses. Therefore, the estimated dose may over- or under-
estimate the actual dose to the population as a whole.

When daily ingestion rates were not available in the literature for wildlife species, an ingestion rate was
estimated using an allometric equation developed by Nagy (1987) which is based on body weight. The
allometric equation is based on the assumption that as body weight increases, ingestion rate would also
increase by a constant rate. There is a large amount of uncertainty in estimating ingestion based on an
allometric equation. However, the equation is designed to be conservative and would likely overestimate
ingestion rates.

The exposure frequency for each receptor is based on the amount of time the species uses the site.
Receptors used in the risk analysis for the wetlands near the former Raytheon facility were assumed to be
year-round residents and have ranges such that they forage and live within the site 100%of the time (i.e., a
site use factor of 1 was used in the dose calculation), with the exception of white-tailed deer and red-
tailed hawks, which were assumed to forage and live within the site 20% and 50% of the time,
respectively. The natural history information for the white-tailed deer indicate that they are not resident
at the site and their foraging range is much larger than the site. Likewise, for red-tailed hawks, the
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foraging range is much larger than the site and they would not be expected to forage on the site during
times when the site is flooded. For the other wildlife receptors that were assumed to forage and live
100% of the time at the site, their actual exposure is likely less than that estimated in this ERC and
therefore the potential risk to these receptors has been overestimated.

11.3.3 Uncertainty Associated With the Effects Assessment (Including Development of
Benchmarks or Toxicity Reference Values to Evaluate Estimated Doses

_Ambient water quality criteria were utilized as a measurement endpoint in this ERC. It is recognized that
these criteria are conservative to be protective. In addition, there are numerous mechanisms that can
reduce the bioavailability and hence, toxicity of chemicals in water, particularly metals. For example,
many metals, particularly copper can be bound to complexes and dissolved organic carbon which reduces
the bioavailable amount of copper to which aquatic organisms might be exposed. These factors are
currently being considered by the USEPA, but as yet have not been adopted (USEPA, 2000c and 2000d).
One of these factors (dissolved organic matter) was evaluated by collecting site-specific data and
information from literature studies that were conducted under conditions similar to the site.

Phytotoxicity benchmarks were developed from multiple sources. However, the data on toxicity of
chemicals to plants in soils is very limited. The direction and magnitude of uncertainty for the
phytotoxicity benchmarks is not known.

For a few COPECs (antimony and tin), toxicity data were not available to derive a toxicity reference
value. Thus, the potential risks from these COPECs will be underestimated. For the rest of the COPECs,
sufficient toxicity data were available to derive TRVs for avian and mammalian wildlife. Uncertainty
factors were applied as appropriate to account for unknown differences in species sensitivity, duration of
exposure, and ecological relevance of the endpoint. It is likely that the use of these uncertainty factors
will overestimate risk.

11.4 Overall Conclusions

Ecological endpoints (i.e., assessment and measurement endpoints) are explicit statements which identify
desired environmental goals and provide a means for determining whether an unacceptable effect may
occur. The assessment and measurement endpoints for the wetlands near the former Raytheon facility
represent those ecological resources selected for protection.

This ERC does not indicate that there is a risk of adverse effects for any of the assessment endpoints
when evaluating locations outside of the “Area of Readily Apparent Harm”. Based on the evaluation
presented in this report, the following overall conclusions can be made:

* Evaluation of site conditions indicated that significant environmental harm is “readily apparent”
for a limited portion of the site as defined by the MCP [310 CMR 40.0995(3)(b)], including:

— visual evidence of stressed biota (e.g., stunted vegetation) attributable to the release at the
site; and

— the existence of COPECs attributable to the site in concentrations which exceed USEPA
Ambient Water Quality Criteria

e There is no evidence of potential risk from on-site COPECs to aquatic receptors in locations
outside of the “Area of Readily Apparent Harm”.

e There is no evidence of potential risk from on-site COPECs to wetland plants in locations outside
of the “Area of Readily Apparent Harm”.
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e There is no evidence of potential risk from on-site COPECs to avian and mammalian receptors in
locations outside of the “Area of Readily Apparent Harm”.

As described in the MCP, there are two possible outcomes of an ERC:

3) No significant risk of harm to the environment exists or has been achieved at the site. In this case, no
further remediation to protect the environmental receptors is required.

4) A significant risk of harm to the environment exists, and, therefore, remedial action must be
implemented, if feasible.

At this site, there is an area where there is a condition of “readily apparent harm”, which may require
consideration of remedial actions, The result of a Stage II ERC indicates that no significant risk of harm
to environmental receptors exists at the site in locations outside of the “Area of Readily Apparent Harm”.
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